

Track Trigger at CMS for the High Luminosity LHC

Louise Skinnari (Northeastern University)

LBL RPM April 8, 2021

Motivation

start of LHC operation

Peak instantaneous luminosity: 5-7.5 x nominal

Standard Model

• Standard Model remarkably successful in explaining experimental data (*)

Standard Model ... and BEYOND

- UNIT OF CONTRACT O
- Standard Model remarkably successful in explaining experimental data
- Cannot explain:

Matter/anti-matter asymmetry? Dark matter?

. . .

Neutrino masses?

nmetry? Incorporating gravity? Why three generations? Why is the Higgs boson so light?

Proton-proton collisions

Parton distribution functions

describe momentum distribution of proton's constituents, measured from experiments

PILEUP:

multiple overlapping pp interactions in the same bunch crossing

Proton-proton collisions

Parton distribution functions

describe momentum distribution of proton's constituents, measured from experiments

Luminosity

CMS Peak Luminosity Per Day, pp

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

Date (UTC)

The LHC challenge

- Processes w. H/W/Z bosons, top quarks, etc. are comparably rare!
 - ~10 top quarks, <1 Higgs / sec
- Huge amount of info produced
 - A collision event ≈ 1MB
 ... 40 million times per second
 (=> 40 TB/s !!!)
- <u>Trigger system</u> reduces 40MHz collision rate to data rate that can be read out & written to disk (~1kHz)

The LHC challenge

Where we are ...

- SM Higgs triumph
- Precision tests of EW / top quark sectors
- New physics searches
 - <u>Directly</u> produce new massive particles
 - Indirectly study rare process & search for deviations

	Statistical-only		Statistical + Systematic			
	ATLAS	CMS	ATLAS	CMS		
$HH o b \overline{b} b \overline{b}$	1.4	1.2	0.61	0.95	-	
HH ightarrow b ar b au au	2.5	1.6	2.1	1.4		
$HH ightarrow b ar{b} \gamma \gamma$	2.1	1.8	2.0	1.8	Inia	nificance wit
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56		
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	301	JU 10 ⁻ ' / exp.
combined	3.5	2.8	3.0	2.6		
	Combined 4.5		Combined		-	
			4.0			

Motivation

• Higgs boson

- Precision measurements of properties & couplings
- Rare decays
- Measure Higgs self-coupling via di-Higgs production
 - Probe shape of Higgs potential & nature of EWSB
- Extend discovery reach in searches for beyond-SM scenarios

Motivation

Higgs boson

CERN-LPCC

- Precision measurements of properties & couplings
- Rare decays
- Measure Higgs self-coupling via di-Higgs production
 - Probe shape of Higgs potential & nature of EWSB
- **Extend discovery reach** in searches for beyond-SM scenarios
- Search for rare SM processes, possibly enhanced by BSM physics
 - e.g. probe flavor-changing neutral currents, highly suppressed in SM

~order of magnitude improvement <u>CERN-LPCC-2018-03</u>	$\mathcal{B} \text{ limit at 95\%C.L.}$ $t \to gu$ $t \to gc$ $t \to Zq$ $t \to \gamma u$ $t \to \gamma c$	HL-LHC $3 ab^{-1}, 14 \text{ TeV}$ 3.8×10^{-6} 32.1×10^{-6} $2.4 - 5.8 \times 10^{-5}$ 8.6×10^{-6} 7.4×10^{-5} $4 a^{-4}$	$\frac{\text{Run-II (36/fb)}}{2 \times 10^{-5}}$ 4×10^{-4} $1.7-2.4 \times 10^{-4}$ $1.3 10^{-4}$ $2.0 10^{-3}$
<u> ERN-LPCC-2018-03</u>	$\begin{array}{c} t ightarrow \gamma c \\ t ightarrow Hq \end{array}$	$7.4 imes 10^{-3}$ 10^{-4}	2.0 10 ⁻³ 1.1 10 ⁻³

Lent offline analysis with high efficiency. For the scenario with 200 PL_{20} comparison of $\varphi_s^{\text{nestatistical strategy}}$ at the present of the scenario with 200 PL_{20} comparison of $\varphi_s^{\text{nestatistical strategy}}$. -1 of a marginal 2007 the array of all 1 this can note in the set 15 left -15 left -15

To study the physics processes of interest, we have to efficiently identify the collisions where they occur (trigger!) ...

... which is an even greater challenge at the HL-LHC!

The price for high luminosity

Simulated event display with average pileup of 140

PILEUP: number of overlapping interactions (expected average ~200)

Particularly challenging for trigger system!

Trigger system: CURRENT

Which collision events to read out & store for offline analysis?

Trigger system: **HL-LHC**

Which collision events to read out & store for offline analysis?

Why tracking @ L1?

18 UTHEAST UTH

- At HL-LHC, event rates would exceed what can be read out at L1
- *Physics goals* rely on excellent detector performance & trigger capabilities
- Typical handle to control event rates at trigger level -- momentum thresholds

Using tracking @ L1

Example: Charged leptons

*Improve p*_T *measurement* & *identification* => *significant rate reductions*

Using tracking @ L1

<u>Example:</u> Jets

Using tracks allows associating jets to common vertex to reject pileup, run lightweight PF @ L1

... how?

CMS tracker

Finely segmented silicon sensors enable charged particles to be traced and, thanks to the magnetic field, for their momenta to be measured. They also reveal the positions at which long-lived unstable particles decay.

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
 - Increased granularity for HL-LHC occupancies
 - Tracking in hardware trigger, identify particles with $p_T > 2 \text{ GeV}$

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
 - Increased granularity for HL-LHC occupancies
 - Tracking in hardware trigger, identify particles with $p_T > 2 \text{ GeV}$

p_T module concept

 Modules provide p_T discrimination in front-end electronics through hit correlations between two closely spaced sensors

- Stubs: Correlated pairs of clusters, consistent with ≥2 GeV track
 - Data reduction at trigger readout (by factor 10-20)
 - Stubs form input to track finding

Tracking @ L1

- Reconstruct trajectories of charged particles with $p_T > 2 \text{ GeV}$
 - At HL-LHC, expect ~7000 charged particles / BX, ~200 trajectories with p_T > 2 GeV

BX = bunch crossing

- Challenges
 - <u>Combinatorics</u> from ~15K input stubs / BX
 - Data volumes of up to ~30 Tbits/s
 - L1 trigger decision within 12.5 μ s, <u>~4 μ s available for track finding</u>
 - A track trigger operating at 40 MHz with <10 μ s latency has never been built

• Utilize extensive parallel processing to tackle above challenges

Track trigger strategy

- Parallelization
 - Divide tracker in segments in φ
 - Time-multiplexed systems -- process several BX simultaneously
- Fully FPGA-based system
 - Off-the-shelf hardware
 - Programmable => flexibility

FPGA = Field Programmable Gate Array

System architecture

• Outer tracker divided in 9 ϕ sectors, time multiplexing factor of 18

L1 trigger architecture

Algorithm overview

- Different algorithms have been explored at CMS for L1 track finding
 - Similar performance & demonstrated feasibility, detailed in <u>Phase-2 Tracker TDR</u>
- <u>Hybrid</u> algorithm combines ideas from legacy algorithms
 - Road-search algorithm based on "tracklet" seeds
 - Kalman Filter used to identify best stub candidates & provide track parameters

Parallelization

- Extensive parallelization in space & time (time multiplex of 18)
- Detector divided into 9 hourglass-shaped ϕ sectors
 - Hourglass shape prevents tracks above given p⊤ threshold from entering >1 sector => <u>no cross-</u> <u>sector communication required!</u>
 - Critical radius tuned to minimize overlap of stubs

- Within-sector parallel data processing
 - Divide φ sector into "virtual modules"
 - Throughout algorithm, only consider combinations compatible with >2 GeV => <u>key to minimize combinatorics & :</u>

Seeding & propagation

- Seed by forming tracklets
 - Pairs of stubs in adjacent layers/disks
 - Initial tracklet parameters from stubs + beam spot constraint
 - Only combinations w. $p_T > 2$ GeV kept
- Project to other layers/disks & match with compatible stubs within pre-defined windows
 - Inside-out & outside-in (more than 1 match allowed)
 - Calculate residuals used in fit

Central η: L1+L2, L3+L4, L5+L6

Barrel-disk overlap: L1+D1, L2+D1, L1+L2

Disks: D1+D2, D3+D4

Duplicates & merging

- By construction, pattern recognition produces duplicate track candidates for a given charged particle
 - Redundancy in seeding (L1+L2 vs L3+L4, etc) ensures high efficiency, but leads to a given particle found >1 time
 - Additional duplicates may originate from tracks with combinatorial stubs
- Duplicates are removed by merging track candidates prior to fitting
- Currently, algorithm merges tracks sharing \geq 3 stubs

Track fitting

- Final track fitting uses Kalman Filter algorithm
- Iterative track fitting
 - Initial estimate of track parameters & their uncertainties from tracklet seed
 - Stub used to update helix parameters (weighted average)
 - χ² calculated, used to reject false candidates & incorrect stubs on genuine candidates
 - Repeat until all stubs are added

Performance

- Examples of expected L1 tracking performance based on simulation
 - High efficiency across p_T/η
 - Precise z₀ resolution for vertex association

Displaced tracking

- Actively exploring an *extended tracking* setup to include capability of reconstructing long-lived particle trajectories
- How? Modified seeding
 - **<u>Prompt</u>** tracklets (2 stubs + origin)
 - **Displaced** triplets (3 stubs)
 - Displaced seeds propagated to other layers/disks similar as prompt to find matching stubs

0.0

0.2

0.4

0.6

How? 5-parameter Kalman Filter fit

1.4

_ 1.6

_ 1.8

_ 2.0

- 2.2

- 2.4

- 2.6

2.8

4.0

1.2

Triplet seeds: L4L5L6, L2L3L4, L2L3D1, L2D1D2

38

Displaced performance

- Extended tracking recovers efficiency for large d₀ particles
 - Increase in track rate ~40% (conservative estimate)
- As example studied in context of triggering on exotic Higgs boson decays
 - $H => \varphi \varphi => 4$ jets, where φ is long-lived

Implementation

- Track finding implemented as dedicated processing modules with memory modules storing data between steps
- Seeding & propagation steps implemented using Xilinx Vivado HLS
- Kalman filter largely implemented in VHDL
- Top-level modules connected in VHDL

Hardware demonstration

- Hardware for track-finding based on ATCA platform (CMS standard for HL-LHC upgrade)
- Demonstration of algorithm in progress

Test stand @ CERN with Apollo & Serenity blades

Apollo: track finding processing boards

- Service Module provides infrastructure components
- *Command Module* contains two large FPGAs, optical fiber interfaces & memories

Serenity: DTC processing

- Carrier card provides services
- Daughter cards host FPGAs for data processing

arXiv:1911.06452

Summary

- Incorporating tracking in L1 trigger critical to achieve required event rate reductions for CMS at HL-LHC
 - Key to achieve physics goals

- $y = \begin{bmatrix} 1 & \pm 4 & mm \end{bmatrix}$ (in the second secon
- Track triggering on this scale never implemented before
 - ▶ Relies on unique detector design with "p⊤ modules"
 - System design based on off-shelf electronics (FPGA)
 - Legacy demonstrators showed feasibility of systems w. required performance
- Extension to <u>displaced tracking</u> brings feasibility of probing physics scenarios involving long-lived particles
- Working toward specifications of final system & next-level demonstrators !

BACKUP

Data flow

Transmission of trigger primit

Broadcast of L1 accept

Stub finding efficiency

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature

Muon systems

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage (1.5<η<2.4)
- Muon tagging (2.4<η<3)

Tracker

- Completely new inner+outer tracker (OT)
- 40 MHz readout (p_T>2 GeV) in OT
- Extend coverage to η~4

<u>Trigger</u>

- Track information @ L1
- L1: 12.5 µs latency,
 750 kHz output rate
- HLT: 7.5 kHz output rate

Other R&D

• Fast timing for in-time pileup suppression

Endcap calorimeter

- Replace endcap calorimeters => HGCal
- Radiation tolerant, high granularity
- 3D capability

2016 demonstrator systems

- Algorithms implemented in emulation software + firmware
- Hardware demonstrations used to validate feasibility & performance
 - µTCA boards with Virtex-7 FPGA
 - <u>Tracklet:</u> 3 boards for <u>b</u> sectors + 1 board emulates input & receives output tracks, AMC13 card for clock & synchronizetion, 240 MHz clock
 - HT+KF: 5 boards for processing + 3 boards for input / output -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
- Excellent performance demonstrated in hardware + measured 3-4 μs latency

